Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
BMC Med ; 20(1): 359, 2022 10 21.
Article in English | MEDLINE | ID: covidwho-2079420

ABSTRACT

BACKGROUND: The severe fever with thrombocytopenia syndrome disease (SFTS), caused by the novel tick-borne SFTS virus (SFTSV), was listed among the top 10 priority infectious disease by World Health Organization due to the high fatality rate of 5-30% and the lack of effective antiviral drugs and vaccines and therefore raised the urgent need to develop effective anti-SFTSV drugs to improve disease treatment. METHODS: The antiviral drugs to inhibit SFTSV infection were identified by screening the library containing 1340 FDA-approved drugs using the SFTSV infection assays in vitro. The inhibitory effect on virus entry and the process of clathrin-mediated endocytosis under different drug doses was evaluated based on infection assays by qRT-PCR to determine intracellular viral copies, by Western blot to characterize viral protein expression in cells, and by immunofluorescence assays (IFAs) to determine virus infection efficiencies. The therapeutic effect was investigated in type I interferon receptor defective A129 mice in vivo with SFTSV infection, from which lesions and infection in tissues caused by SFTSV infection were assessed by H&E staining and immunohistochemical analysis. RESULTS: Six drugs were identified as exerting inhibitory effects against SFTSV infection, of which anidulafungin, an antifungal drug of the echinocandin family, has a strong inhibitory effect on SFTSV entry. It suppresses SFTSV internalization by impairing the late endosome maturation and decreasing virus fusion with the membrane. SFTSV-infected A129 mice had relieving symptoms, reduced tissue lesions, and improved disease outcomes following anidulafungin treatment. Moreover, anidulafungin exerts an antiviral effect in inhibiting the entry of other viruses including SARS-CoV-2, SFTSV-related Guertu virus and Heartland virus, Crimean-Congo hemorrhagic fever virus, Zika virus, and Herpes simplex virus 1. CONCLUSIONS: The results demonstrated that the antifungal drug, anidulafungin, could effectively inhibit virus infection by interfering with virus entry, suggesting it may be utilized for the clinical treatment of infectious viral diseases, in addition to its FDA-approved use as an antifungal. The findings also suggested to further evaluate the anti-viral effects of echinocandins and their clinical importance for patients with infection of viruses, which may promote therapeutic strategies as well as treatments and improve outcomes pertaining to various viral and fungal diseases.


Subject(s)
Anidulafungin , Bunyaviridae Infections , Virus Diseases , Animals , Mice , Anidulafungin/pharmacology , Anidulafungin/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Bunyaviridae Infections/drug therapy , Clathrin , Receptor, Interferon alpha-beta , SARS-CoV-2 , Viral Proteins , Virus Diseases/drug therapy
2.
BMC Microbiol ; 22(1): 204, 2022 08 20.
Article in English | MEDLINE | ID: covidwho-2038659

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) is an emerging tick-borne phlebovirus with a high fatality rate of 12-30%, which has an expanding endemic and caused thousands of infections every year. Central nervous system (CNS) manifestations are an important risk factor of SFTS outcome death. Further understanding of the process of how SFTSV invades the brain is critical for developing effective anti-SFTS encephalitis therapeutics. We obeserved changes of viral load in the brain at different time points after intraperitoneal infection of SFTSV in newborn C57/BL6 mice. The virus invaded the brain at 3 h post-infection (hpi). Notably, the viral load increased exponentially after 24 hpi. In addition, it was found that in addition to macrophages, SFTSV infected neurons and replicated in the brain. These findings provide insights into the CNS manifestations of severe SFTS, which may lead to drug development and encephalitis therapeutics.


Subject(s)
Bunyaviridae Infections , Encephalitis , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Thrombocytopenia , Animals , Animals, Newborn , Brain , Bunyaviridae Infections/epidemiology , Mice , Neurons , Phlebovirus/physiology , Thrombocytopenia/epidemiology
3.
China CDC Wkly ; 4(37): 823-827, 2022 Sep 16.
Article in English | MEDLINE | ID: covidwho-2030649
4.
Front Pharmacol ; 12: 735223, 2021.
Article in English | MEDLINE | ID: covidwho-1551527

ABSTRACT

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne virus causing serious infectious disease with a high case-fatality of up to 50% in severe cases. Currently, no effective drug has been approved for the treatment of SFTSV infection. Here, we performed a high-throughput screening of a natural extracts library for compounds with activities against SFTSV infection. Three hit compounds, notoginsenoside Ft1, punicalin, and toosendanin were identified for displaying high anti-SFTSV efficacy, in which, toosendanin showed the highest inhibition potency. Mechanistic investigation indicated that toosendanin inhibited SFTSV infection at the step of virus internalization. The anti-viral effect of toosendanin against SFTSV was further verified in mouse infection models, and the treatment with toosendanin significantly reduced viral load and histopathological changes in vivo. The antiviral activity of toosendanin was further expanded to another bunyavirus and the emerging SARS-CoV-2. This study revealed a broad anti-viral effect of toosendanin and indicated its potential to be developed as an anti-viral drug for clinical use.

5.
Theranostics ; 10(26): 12223-12240, 2020.
Article in English | MEDLINE | ID: covidwho-934619

ABSTRACT

Rationale: Many viral infections are known to activate the p38 mitogen-activated protein kinase (MAPK) signaling pathway. However, the role of p38 activation in viral infection and the underlying mechanism remain unclear. The role of virus-hijacked p38 MAPK activation in viral infection was investigated in this study. Methods: The correlation of hepatitis C virus (HCV) infection and p38 activation was studied in patient tissues and primary human hepatocytes (PHHs) by immunohistochemistry and western blotting. Coimmunoprecipitation, GST pulldown and confocal microscopy were used to investigate the interaction of p38α and the HCV core protein. In vitro kinase assays and mass spectrometry were used to analyze the phosphorylation of the HCV core protein. Plaque assays, quantitative real time PCR (qRT-PCR), western blotting, siRNA and CRISPR/Cas9 were used to determine the effect of p38 activation on viral replication. Results: HCV infection was associated with p38 activation in clinical samples. HCV infection increased p38 phosphorylation by triggering the interaction of p38α and TGF-ß activated kinase 1 (MAP3K7) binding protein 1 (TAB1). TAB1-mediated p38α activation facilitated HCV replication, and pharmaceutical inhibition of p38α activation by SB203580 suppressed HCV infection at the viral assembly step. Activated p38α interacted with the N-terminal region of the HCV core protein and subsequently phosphorylated the HCV core protein, which promoted HCV core protein oligomerization, an essential step for viral assembly. As expected, SB203580 or the HCV core protein N-terminal peptide (CN-peptide) disrupted the p38α-HCV core protein interaction, efficiently impaired HCV assembly and impeded normal HCV replication in both cultured cells and primary human hepatocytes. Similarly, severe fever with thrombocytopenia syndrome virus (SFTSV), herpes simplex virus type 1 (HSV-1) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection also activated p38 MAPK. Most importantly, pharmacological blockage of p38 activation by SB203580 effectively inhibited SFTSV, HSV-1 and SARS-CoV-2. Conclusion: Our study shows that virus-hijacked p38 activation is a key event for viral replication and that pharmacological blockage of p38 activation is an antiviral strategy.


Subject(s)
COVID-19/metabolism , Hepacivirus/metabolism , Hepatitis C/metabolism , Mitogen-Activated Protein Kinase 14/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , A549 Cells , Adaptor Proteins, Signal Transducing/metabolism , Animals , COVID-19/virology , Chlorocebus aethiops , Enzyme Activation , HEK293 Cells , Hepatitis C/pathology , Hepatitis C/virology , Hepatocytes/metabolism , Humans , Imidazoles/pharmacology , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Phosphorylation , Pyridines/pharmacology , Vero Cells , Viral Core Proteins/metabolism , Virus Replication/drug effects
6.
PeerJ ; 8: e9914, 2020.
Article in English | MEDLINE | ID: covidwho-789840

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan City, China, late in December 2019 is an example of an emerging zoonotic virus that threatens public health and international travel and commerce. When such a virus emerges, there is often insufficient specific information available on mechanisms of virus dissemination from animal-to-human or from person-to-person, on the level or route of infection transmissibility or of viral release in body secretions/excretions, and on the survival of virus in aerosols or on surfaces. The effectiveness of available virucidal agents and hygiene practices as interventions for disrupting the spread of infection and the associated diseases may not be clear for the emerging virus. In the present review, we suggest that approaches for infection prevention and control (IPAC) for SARS-CoV-2 and future emerging/re-emerging viruses can be invoked based on pre-existing data on microbicidal and hygiene effectiveness for related and unrelated enveloped viruses.

7.
Respir Med Case Rep ; 31: 101200, 2020.
Article in English | MEDLINE | ID: covidwho-731894

ABSTRACT

Use of systemic corticosteroids for the treatment for coronavirus disease 2019 (COVID-19) among chronic obstructive pulmonary disease (COPD) patients is not well described. A 58-year-old man with fever and progressive dyspnea was admitted to the Showa University Hospital, and showed severe respiratory failure which needed mechanical ventilation. His chest computed tomography scanning showed emphysema and bilateral ground-glass opacity caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. He received 30 mg prednisolone for five days with antiviral drug of favipiravir, and was successfully extubated on day five. A SARS-CoV-2 polymerase chain reaction (PCR) test became negative on day 15. He was discharged on day 21. Serum IgM and IgG antibodies against SARS-CoV-2 converted to positive on day 7 and they kept positive on day 54 for both IgM and IgG. Combination treatment of short-course systemic corticosteroid and favipiravir might improve the prognosis for critically ill COVID-19 pneumonia with COPD without negative influence on viral clearance or antibody production.

SELECTION OF CITATIONS
SEARCH DETAIL